Performance Analysis and Characterization of a Fiber/Epoxy Composite in a Simulated Hygrothermal Corrosion Environment

LI Jinxuan, XUE Yawei, SUN Chenglong, WU Bin, SUN Dehai, WU Nana, KONG Guangming

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (12) : 118-124.

PDF(30918 KB)
PDF(30918 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (12) : 118-124. DOI: 10.7643/ issn.1672-9242.2025.12.015
Environmental Test and Observation

Performance Analysis and Characterization of a Fiber/Epoxy Composite in a Simulated Hygrothermal Corrosion Environment

  • LI Jinxuan1, XUE Yawei2, SUN Chenglong3, WU Bin4, SUN Dehai4, WU Nana5, KONG Guangming4
Author information +
History +

Abstract

The work aims to reveal the correlation mechanism between the microstructural evolution and the electromagnetic wave absorption performance of fiber/epoxy composites during corrosion in a hot and humid tropical marine environment, providing a theoretical basis for the design of high-environmental-adaptability wave-absorbing materials and the prediction of their service life. A periodic immersion accelerated corrosion test was used to simulate the target environment. Multi-scale morphological characterization and reflectivity testing via the arch measurement method were combined to systematically analyze changes in the microstructure and wave absorption performance of the material before and after corrosion. Quantitative statistics, such as pit diameter distribution and surface roughness variation, along with frequency-band separation analysis, were employed to decipher the effect mechanism of corrosion on wave absorption behavior across different frequency bands. Corrosion led to significant alterations in the surface morphology and component distribution of the material, resulting in frequency-dependent evolution of the wave absorption performance. In the 8-12 GHz frequency band, the heterogeneous interfaces formed by corrosion products enhanced interfacial polarization loss, reducing the reflection loss (RL) by 0.5-2 dB and improving the wave absorption efficiency by 10%-20%. In the 12-18 GHz frequency band, pits with an average diameter of 5-8 µm on the fiber surface damaged interface integrity, causing an increase in RL by 1-3 dB and a decrease in wave absorption efficiency by 20%-30%. Analysis indicated that the increased surface roughness and the deposition of corrosion products benefited impedance matching and electromagnetic wave scattering in the mid-frequency range, thereby enhancing mid-frequency absorption. The degradation of high-frequency performance was attributed to corrosion damage at the fiber-resin interface and the deterioration of electrical properties. A competitive loss mechanism is proposed, that is "corrosion products enhance interfacial polarization to promote mid-frequency absorption, while interface damage and electrical degradation weaken high-frequency absorption". This study reveals the intrinsic relationship between "corrosion-structure-performance" in composites under hot-humid marine environment, providing crucial insights for the environmental adaptability assessment, design optimization, and service life prediction of wave absorbing composite materials

Key words

composites / multi-scale morphological characterization / hot-humid marine environment / arch measurement method for reflectivity / reflection loss / periodic wet-dry accelerated corrosion

Cite this article

Download Citations
LI Jinxuan, XUE Yawei, SUN Chenglong, WU Bin, SUN Dehai, WU Nana, KONG Guangming. Performance Analysis and Characterization of a Fiber/Epoxy Composite in a Simulated Hygrothermal Corrosion Environment[J]. Equipment Environmental Engineering. 2025, 22(12): 118-124 https://doi.org/10.7643/ issn.1672-9242.2025.12.015

References

[1] 孙巍, 胡裕龙, 王智峤. 碳纤维复合材料-钢电偶腐蚀研究[J]. 装备环境工程, 2021, 18(11): 106-113.
SUN W, HU Y L, WANG Z Q.Study of Galvanic Corrosion between Steel and Carbon Fiber Composite[J]. Equipment Environmental Engineering, 2021, 18(11): 106-113.
[2] 丁康康, 杜建平, 王振华, 等. 严酷海洋大气环境下玻璃纤维复合材料腐蚀老化规律研究[J]. 装备环境工程, 2021, 18(11): 10-17.
DING K K, DU J P, WANG Z H, et al.Study on Corrosion Aging Behavior of Glass Fiber Reinforced Composites in Severe Marine Atmospheric Environment[J]. Equipment Environmental Engineering, 2021, 18(11): 10-17.
[3] 李旭光, 吴雪猛, 石珺玺, 等. 蜂窝夹层结构复合材料的吸波隐身技术研究进展[J]. 复合材料学报, 2024, 41(6): 2775-2788.
LI X G, WU X M, SHI J X, et al.Research Progress on Microwave Absorption Stealth Technology of Honeycomb Sandwich Structure Composites[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2775-2788.
[4] 吴赛, 杨东方, 胡悦, 等. 新型碳基雷达吸波材料的制备及反射率性能仿真计算[J]. 航空发动机, 2025, 51(1): 171-174.
WU S, YANG D F, HU Y, et al.Preparation and Reflectance Performance Simulation of New Carbon-Based Radar Absorbing Materials[J]. Aeroengine, 2025, 51(1): 171-174.
[5] 秦环宇, 张敏, 郭卿超, 等. 羰基铁基复合材料的高效吸波-防腐双功能特性研究[J]. 电子元件与材料, 2024, 43(6): 660-667.
QIN H Y, ZHANG M, GUO Q C, et al.Investigation on the Dual Functional Properties of Efficient Microwave Absorption and Anti-Corrosion of Carbonyl Iron-Based Composites[J]. Electronic Components and Materials, 2024, 43(6): 660-667.
[6] 陈国红, 周芳灵, 赵丽平, 等. 铁氧体磁性材料的吸波机理及改善吸波性能的研究进展[J]. 化工进展, 2015, 34(11): 3965-3969.
CHEN G H, ZHOU F L, ZHAO L P, et al.Absorbing Mechanism of Ferrite Magnetic Materials and the Research Progress in Improving the Wave Absorbing Property[J]. Chemical Industry and Engineering Progress, 2015, 34(11): 3965-3969.
[7] 张德印, 路天宇, 张嘉迅, 等. 聚合物基吸波导热复合材料的研究进展[J]. 复合材料学报, 2024, 41(12): 6308-6322.
ZHANG D Y, LU T Y, ZHANG J X, et al.Research Progress of Polymer-Based Wave-Absorbing and Heat-Conducting Composites[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6308-6322.
[8] 杜永, 马玉娥. 湿热环境下纤维增强树脂基复合材料疲劳性能研究进展[J]. 复合材料学报, 2022, 39(2): 431-445.
DU Y, MA Y E.Fatigue Performance of Fiber Reinforced Polymer Composites under Hygrothermal Environment-A Review[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 431-445.
[9] 蔡海硕. 纤维增强环氧树脂吸波复合材料的电磁性能研究[D]. 南京: 南京航空航天大学, 2019.
CAI H S.Study on Electromagnetic Properties of Fiber-Reinforced Epoxy Resin Wave-Absorbing Composite Materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
[10] 王中奇, 李普旺, 李乐凡, 等. 橡胶吸波材料的研究进展[J]. 应用化工, 2017, 46(12): 2476-2479.
WANG Z Q, LI P W, LI L F, et al.Recent Development in Study of Rubber Microwave Absorbing Materials[J]. Applied Chemical Industry, 2017, 46(12): 2476-2479.
[11] 何翔, 李永清, 朱锡, 等. 夹芯型吸波结构耐老化性能研究[J]. 玻璃钢/复合材料, 2018(1): 73-78.
HE X, LI Y Q, ZHU X, et al.Aging Resistance of Microwave Absorbing Sandwich Structure[J]. Fiber Reinforced Plastics/Composites, 2018(1): 73-78.
[12] 班国东, 刘朝辉, 叶圣天, 等. 碳纤维复合吸波材料的频散特性影响规律研究[J]. 表面技术, 2017, 46(4): 205-211.
BAN G D, LIU Z H, YE S T, et al.Influence Laws of Frequency Dispersion Characteristics of Carbon Fiber Composite Absorbing Material[J]. Surface Technology, 2017, 46(4): 205-211.
[13] LIU X Y, MA W L, YANG T Y, et al.Multilevel Heterogeneous Interfaces Enhanced Polarization Loss of 3D-Printed Graphene/NiCoO2/Selenides Aerogels for Boosting Electromagnetic Energy Dissipation[J]. ACS Nano, 2024, 18(14): 10184-10195.
[14] 孙晓光, 陈志坚, 王睿, 等. 循环盐雾环境中碳纤维复合材料-6082铝合金螺栓连接结构中铝合金的腐蚀行为[J]. 腐蚀与防护, 2024, 45(4): 26-32.
SUN X G, CHEN Z J, WANG R, et al.Corrosion Behavior of Al Alloy of Carbon-Fiber-Composite and 6082 Aluminum Alloy Bolt Connection Structure in Circulating Salt Spray Environment[J]. Corrosion & Protection, 2024, 45(4): 26-32.
[15] 张晶, 苏宏静, 贺靖, 等. 国产雷达罩用玻璃纤维增强环氧树脂预浸料制备及复合材料性能[J]. 复合材料科学与工程, 2025(7): 140-147.
ZHANG J, SU H J, HE J, et al.Preparation of Glass Fiber Reinforced Epoxy Resin Prepreg for Domestic Radar Cover and Properties of Composite Materials[J]. Composites Science and Engineering, 2025(7): 140-147.
[16] 董洁. 纤维增强吸波复合材料的制备与性能研究[D]. 西安: 西北工业大学, 2019.
DONG J.Study on Preparation and Properties of Fiber-Reinforced Wave-Absorbing Composites[D]. Xi’an: Northwestern Polytechnical University, 2019.
[17] 丁康康, 白雪寒, 彭文山, 等. 青岛海洋环境碳纤维复合材料与低合金钢电偶腐蚀研究[J]. 装备环境工程, 2024, 21(2): 97-103.
DING K K, BAI X H, PENG W S, et al.Galvanic Corrosion of Carbon Fiber Reinforced Composites and Low Alloy Steel in Marine Environment of Qingdao[J]. Equipment Environmental Engineering, 2024, 21(2): 97-103.
[18] 文湘隆, 廖思凡, 陈凯, 等. 环氧树脂/玻璃纤维/石墨烯复合材料的电磁吸波性能[J]. 工程塑料应用, 2024, 52(3): 126-131.
WEN X L, LIAO S F, CHEN K, et al.Electromagnetic Absorption Performance of Epoxy Resin/Glass Fiber/Graphene Composites[J]. Engineering Plastics Application, 2024, 52(3): 126-131.
[19] 李天天, 夏龙, 黄小萧, 等. 介电损耗型微波吸收材料的研究进展[J]. 材料工程, 2021, 49(6): 1-13.
LI T T, XIA L, HUANG X X, et al.Progress in Dielectric Loss Microwave Absorbing Materials[J]. Journal of Materials Engineering, 2021, 49(6): 1-13.
[20] SI W, LIAO Q W, HOU W, et al.Low-Frequency Broadband Absorbing Coatings Based on MOFs: Design, Fabrication, Microstructure and Properties[J]. Coatings, 2022, 12(6): 766.
[21] 黄科, 冯斌, 邓京兰. 结构型吸波复合材料研究进展[J]. 高科技纤维与应用, 2010, 35(6): 54-58.
HUANG K, FENG B, DENG J L.Research Progress of Structural Radar-Absorbing Composite Materials[J]. Hi-Tech Fiber & Application, 2010, 35(6): 54-58.
[22] 覃维, 安书悦, 陈帅, 等. 基于迭代反演的非磁性材料复介电常数测量及初值选取方法[J]. 物理学报, 2023, 72(7): 171-177.
QIN W, AN S Y, CHEN S, et al.A Method of Measuring Complex Ermittivity of Nonmagnetic Materials and Selecting Its Initial Value Based on Iterative Inversion[J]. Acta Physica Sinica, 2023, 72(7): 171-177.
[23] ZHANG W M, ZHAO B, XIANG H M, et al.One-Step Synthesis and Electromagnetic Absorption Properties of High Entropy Rare Earth Hexaborides (HE REB6) and High Entropy Rare Earth Hexaborides/Borates (HE REB6/HE REBO3) Composite Powders[J]. Journal of Advanced Ceramics, 2021, 10(1): 62-77.
[24] ZHANG Y J, PAN L, ZHANG P G, et al.Gradient Multilayer Design of Ti3C2Tx MXene Nanocomposite for Strong and Broadband Microwave Absorption[J]. Small Science, 2022, 2(7): 2200018.
[25] 陈婧, 吕熙睿, 张佳平, 等. CVI+PIP复合工艺制备SiCf/SiC复合材料的微观结构和水氧腐蚀行为研究[J]. 陶瓷学报, 2022, 43(6): 1030-1036.
CHEN J, LYU X R, ZHANG J P, et al.Microstructure and Wet Oxidation Behavior of SiCf/SiC Composites Prepared with CVI+PIP Hybrid Process[J]. Journal of Ceramics, 2022, 43(6): 1030-1036.
[26] 张磊, 李永清, 王静南, 等. 雷达隐身复合材料研究进展及在舰船上的应用[J]. 舰船科学技术, 2020, 42(3): 144-149.
ZHANG L, LI Y Q, WANG J N, et al.The Research and Application of Radar Wave Stealth Composites for Warship[J]. Ship Science and Technology, 2020, 42(3): 144-149.
PDF(30918 KB)

Accesses

Citation

Detail

Sections
Recommended

/